Preview

Digital Transformation

Advanced search

Optimization Algorithm for Selecting Compressible Data

https://doi.org/10.38086/2522-9613-2019-1-76-80

Abstract

The article deals with the problem of the efficiency of data compression algorithms. The analysis of the effectiveness of the speed characteristics of data compression of the Btrfs file system of the Linux kernel has been performed. An algorithm for optimizing the choice of data for real-time compression is proposed. The described algorithm gives the answer with an acceptable accuracy whether it is necessary to compress the data. This can significantly reduce the use of computing power. The main performance characteristics of the described algorithm are determined.

About the Authors

E. V. Mozhenkova
Belarusian State University of Informatics and Radioelectronics
Belarus

Master of Technical Sciences, Senior Lecturer of Microprocessor Systems and Networks Department of IIT

28 Kozlova Str., 220037 Minsk, Republic of Belarus



T. O. Titovets
Belarusian State University of Informatics and Radioelectronics
Belarus

Master of Technical Sciences, Senior Lecturer of Microprocessor Systems and Networks Department of IIT

28 Kozlova Str., 220037 Minsk, Republic of Belarus



A. I. Paramonov
Belarusian State University of Informatics and Radioelectronics
Belarus

Candidate of Sciences (Technology), Associate Professor of Information Technology Software Department

28 Kozlova Str., 220037 Minsk, Republic of Belarus

 



References

1. Trubacheva S. I. Osobennosti postroeniya fajlovy'x system. Vestnik Volzhskogo universiteta im. V. N. Tatishheva [Bulletin of the Volzhsky University named after V. N. Tatishchev]. Tol'yatti, 2013, pp 10–22.

2. Conway A., Bakshi A. File Systems Fated for Senescence? Nonsense, Says Science! 15th USENIX Conference on File and Storage Technologies (February 27–March 2), 2017, Santa Clara, CA, USA. Available at: https://www.usenix.org/system/files/conference/fast17/fast17-conway.pdf (accessed: 22.02.2019).

3. Nisbet R., Miner G., Yale K. J. D. Model Evaluation and Enhancement. Handbook of Statistical Analysis and Data Mining Applications, 2018, pp. 215–233.

4. Klyuchenya V. V. Processor DKP dlya sistem kompressii mul'timedia danny'x bez poter' i s poteryami. Informacionny'e texnologii i sistemy' 2013 (ITS 2013): materialy mezhdunarodnoj nauchnoj konferencii, BGUIR, Minsk, Belarus', 23 oktyabrya 2013 g. [Information Technologies and Systems 2013 (ITS 2013): Materials of the International Scientific Conference, BSUIR, Minsk, 24th October 2013], 2013, pp. 186–187.

5. Mohan J., Kadekodi R., Chidambaram V. Analyzing IO Amplification in Linux File Systems. University of Texas at Austin. 2017. Available at: https://arxiv.org/pdf/1707.08514.pdf (accessed: 22.02.2019).

6. Sayed A. Mostafa, Ibrahim A. Ahmad. Recent developments in systematic sampling. Journal of Statistical Theory and Practice, 2017, pp. 290–310.

7. Kernel.org git repositories. Available at: https://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux.git/log/?h=fornext&qt=author&q=nefelim4ag (accessed: 22.02.2019).

8. Linux 4.15. Available at: https://lkml.org/lkml/2018/1/28/173 (accessed: 22.02.2019).


Review

For citations:


Mozhenkova E.V., Titovets T.O., Paramonov A.I. Optimization Algorithm for Selecting Compressible Data. Digital Transformation. 2019;(1):76-80. (In Russ.) https://doi.org/10.38086/2522-9613-2019-1-76-80

Views: 6763


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9613 (Print)
ISSN 2524-2822 (Online)