Comparative Analysis of Neural Networking and Regression Models for Time Series Forecasting
https://doi.org/10.38086/2522-9613-2019-2-60-68
Abstract
About the Author
S. V. SholtanyukBelarus
Assistant of the Department of Computer Applications and Systems, FAMCS
4 Independence Ave., 220030 Minsk, Republic of Belarus
References
1. Chuchueva I. A. Model' prognozirovaniya vremennykh ryadov po vyborke maksimal'nogo pravdopodobiya [The time series forecast model based on maximum likeness set] Candidate of science dissertation. M.: Bauman Moscow State Technical University, 2012. 155 p. (In Russian).
2. Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators, Neural Networks 2 (5) (1989). pp. 359-366.
3. Bengio Y., LeCun Y. Scaling learning algorithms towards AI. In L. Bottou et al. (Eds.), Large-Scale Kernel Machines. Cambridge, MA, MIT Press, 2007. pp. 323-362.
4. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (accessed: 19.01.2019)
5. JJ Allaire and Francois Chollet (2018). keras: R Interface to 'Keras'. R package version 2.2.0. Available at: https:// CRAN.R-project.org/package=keras. (accessed: 19.01.2019)
6. J. Duchi. E. Hazan. Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 12 (2011). pp. 2121-2159.
7. Ruder S. An overview of gradient descent optimisation algorithms. arXiv preprint arXiv:1609.04747v2. Available at: https://arxiv.org/abs/1609.04747. (accessed: 19.01.2019)
Review
For citations:
Sholtanyuk S.V. Comparative Analysis of Neural Networking and Regression Models for Time Series Forecasting. Digital Transformation. 2019;(2):60-68. (In Russ.) https://doi.org/10.38086/2522-9613-2019-2-60-68