Preview

Digital Transformation

Advanced search

Algorithms for Processing Coronavirus Genomes for the Goals and Objectives of Modern Immunoinformatics, Vaccinomics, and Virology

https://doi.org/10.35596/2522-9613-2022-28-1-71-81

Abstract

The novel coronavirus pandemic has stimulated the scientific activity of virology and interdisciplinary sciences: medical cybernetics and bioinformatics. The article is focused on the study of algorithms for processing bioinformatic data of genomic origin predominantly for the purposes of predominantly immunoinformatics and computational vaccinology. The schemes of algorithms developed by the authors for the analysis of bioinformatic data are presented. The algorithms for processing genomic information developed by the authors based on the analysis of the available literature and many years of experience in computational and laboratory experiments can be used not only for the design and analysis of epitope vaccine components, but also for the other tasks of computational virology and microbiology. In silico experiments on the analysis of bioinformatic data are relatively low-cost and multi-informative, but they require highly qualified scientists with extensive experience, interdisciplinary training, and, accordingly, a wide range of knowledge and skills. However, for the complete analysis and implementation of, for example, the epitope vaccines, subsequent validation by the laboratory and in vivo experiments are required.

About the Authors

M. V. Sprindzuk
National Academy of Sciences of Belarus
Belarus

Sprindzuk Matvey Vladimirovich, TehSciPhD (Medical Systems Engineering), Senior Researcher at the United Institute of Informatics Problems

220012, Minsk, Surganova st. 6, tel. +375-33-682-57-55



A. S. Vladyko
Belarus Ministry of Healthcare
Belarus

Vladyko A. S., Dr. of Sci. (Mathematics), Professor, Principal Researcher at the Republican Scientific and Practical Center for Epidemiology and Microbiology



L. P. Titov
RRPC for epidemiology and microbiology
Belarus

Titov L. P., Dr. of Sci. (Mathematics), Professor, Academic of NASB, Head of the Laboratory of Experimental Immunology



Lu Zhuozhuang
Chinese Center for Disease Control and Prevention
China

Zhuozhuang Lu, Dr.of Sci. (Mathematics), Professor, Principal (Head) Researcher



V. I. Bernik
State Scientific Institution «Institute of Mathematics of the National Academy of Sciences of Belarus»
Belarus

Bernik V. I., Dr. of Sci. (Physics and Mathematics), Head Researcher at the Department of Number Theory, professor



References

1. Frishman D., Marz M. Virus Bioinformatics. New York: CRC Press; 2021.

2. Ezzemani W., Windisch M.P., Kettani A., Altawalah H., Nourlil J., Benjelloun S., Ezzikouri S. Immunoinformatics-based identification of novel potential B cell and T cell epitopes to fight Zika virus infections. Infect Disord Drug Targets. 2021;21(4):572-581. DOI: 10.2174/1871526520666200810153657

3. Alam A., Ali S., Ahamad S., Malik M.Z., Ishrat R. From ZikV genome to vaccine: in silico approach for the epitopebased peptide vaccine against Zika virus envelope glycoprotein. Immunology. 2016;149(4):386-399.

4. Waller F.M., Reche P.A., Flower D.R. West Nile Virus Vaccine Design by T Cell Epitope Selection: In Silico Analysis of Conservation, Functional Cross-Reactivity with the Human Genome, and Population Coverage. J Immunol Res. 2020;2020:7235742.

5. Dutta S.K., Bhattacharya T., Tripathi A. Chikungunya virus: genomic microevolution in Eastern India and its in-silico epitope prediction. 3 Biotech. 2018;8(7):318.

6. Sakib M.S., Islam M.R., Hasan A.K., Nabi A.H. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv Bioinformatics. 2014;2014:402492.

7. Ali M.T., Islam M.O. A Highly Conserved GEQYQQLR Epitope Has Been Identified in the Nucleoprotein of Ebola Virus by Using an In Silico Approach. Adv Bioinformatics. 2015;2015:278197.

8. Bazhan S.I., Antonets D.V., Karpenko L.I., Oreshkova S.F., Kaplina O.N., Starostina E.V., Dudko S.G., Fedotova S.A., Ilyichev A.A. In silico Designed Ebola Virus T-Cell Multi-Epitope DNA Vaccine Constructions Are Immunogenic in Mice. Vaccines (Basel). 2019;7(2):34.

9. Mima K.A., Katorkina E.I., Katorkin S.A., Tsybanov S.Zh., Malogolovkin A.S. In silico identification of B- and T-cell epitopes of the CD2v protein of African swine fever virus (Asfivirus, Asfarviridae). Questions of virology. 2020;65(2):103-112.

10. Du L., Li F. MERS-CoV. MDPI AG; 2019.

11. House N.N.C., Sheeba P., Honey S. Corona viruses: a review on SARS, MERS and COVID-19. Microbiology Insights. 2021;14(11786361211002481.

12. Huh J.E., Han S., Yoon T. Data mining of coronavirus: SARS-CoV-2, SARS-CoV and MERS-CoV. BMC research notes. 2021;14(1):150.

13. Ulanova T., Puzyrev V., Ryabinina S., Burkov A., Obryadina A. Theoretical prediction of antigenic epitopes of severe acute respiratory syndrome virus (SARS-CoV) proteins and assessment of their diagnostic significance. Questions of virology. 2005;50(5):22-24.

14. Li M., Zeng J., Li R., Wen Z., Cai Y., Wallin J., Shu Y., Du X., Sun C. Rational Design of a Pan-Coronavirus Vaccine Based on Conserved CTL Epitopes . Viruses. 2021;13(2):333.

15. Xiang Z., He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics. 2013;14(1):S2.

16. Ong E., Wang H., Wong M.U., Seetharaman M., Valdez N., He Y. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics. 2020;36(10):3185-3191.

17. He Y., Xiang Z., Mobley H.L. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol. 2010;2010(Epub 2010 Jul 4.):297505.

18. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.

19. Kucherov G. Evolution of biosequence search algorithms: a brief survey. Bioinformatics. 2019;35(19):3547-52.

20. Vita R., Mahajan S., Overton J.A., Dhanda S.K., Martini S., Cantrell J.R., Wheeler D.K., Sette A., Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;8;47(D1):D339-D343..

21. Sprindzuk M.V., Titov L.P., Skryahin A.E., Skryahina E.M., Konchits A.P., Zalutskaya O.M., Gilep A.P., Slizen V.V. Software package for practical processing of genomic data of Mycobacterium tuberculosis. Molecular and applied genetics. 2019;27:46-51.

22. Sprindzuk M.V., Konchits A.P., Slizen V.V., Titov L.P. Algorithms and software for processing the plant genome data. Molecular and applied genetics. 2018;25:99-107.

23. Sprindzuk M.V., Mozharovskaya L.V., Konchits A.P., Titov L.P. Modern algorithms for processing transcriptome data: a review of methods and results of approbation. Digital transformation. 2021;(1):53-64.

24. Sprindzuk M.V., Titov L.P., Konchits A.P. Practical issues of creation and application of DNA banks for the purposes of forensics and related disciplines. Digital transformation. 2019;(1):49-59.

25. Sprindzuk M.V., Titov L.P., Lukyanov A.M., Demidchik Yu.E., Kolas Yu.A., Konchits A.P., Sergeev R.S., Gorbunov V.A. Processing and visualization of data obtained from DNA matrices. Innovative technologies in medicine. 2015;(2-3):98-110.

26. Lukashevich I.S., Maryankova R., Vladyko A.S., Nashkevich N., Koleda S., Djavani M., Horejsh D., Voitenok N.N., Salvato M.S. Lassa and mopeia virus replication in human monocytes/macrophages and in endothelial cells: Different effects on IL-8 and TNF-α gene expression. Journal of medical virology. 1999;59(4):552-60.

27. Vladyko A.S. The main genome and ecology. Materials of the Interuniversity Scientific Congress (Moscow, December 18, 2019). M.: Ed. Infiniti, 2019:94-99.

28. Vladyko A.S. Biological weapons and the environment. School of Science. 2019;1(8):4-9.

29. Vladyko A.S. Origin of infections and somatic diseases: COVID-19. School of Science. 2020;1(2):10-13.

30. Samoilova T., Votiakov V., Titov L. Virologic and serologic investigations of West Nile virus circulation in Belarus. Central European journal of public health. 2003;11(2):55-62.

31. Islam R., Raju R.S., Tasnim N., Shihab I.H., Bhuiyan M.A., Araf Y., Islam T. Choice of assemblers has a critical impact on de novo assembly of SARS-CoV-2 genome and characterizing variants. Briefings in Bioinformatics. 2021;22(5):102.

32. Yadav N., Vishwakarma P., Khatri R., Siddqui G., Awasthi A., Ahmed S., Samal S. Comparative immunogenicity analysis of intradermal versus intramuscular administration of SARS-CoV-2 RBD epitope peptide-based immunogen In vivo. Microbes Infect. 2021;23(4-5):104843.


Review

For citations:


Sprindzuk M.V., Vladyko A.S., Titov L.P., Zhuozhuang L., Bernik V.I. Algorithms for Processing Coronavirus Genomes for the Goals and Objectives of Modern Immunoinformatics, Vaccinomics, and Virology. Digital Transformation. 2022;28(1):71-81. (In Russ.) https://doi.org/10.35596/2522-9613-2022-28-1-71-81

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9613 (Print)
ISSN 2524-2822 (Online)