Preview

Цифровая трансформация

Расширенный поиск

Стратегия и тактика внедрения генеративного искусственного интеллекта в инструментальную систему дистанционного обучения DL.GSU.BY

https://doi.org/10.35596/1729-7648-2024-30-4-42-49

Аннотация

В статье рассмотрены стратегия и тактика внедрения генеративного искусственного интеллекта (ГенИИ) в инструментальную систему дистанционного обучения DL.GSU.BY. Стратегия заключается в последовательном выполнении следующих этапов разработки: создание возможностей удобной работы с ГенИИ в системе DL; запуск электронных ГенИИ-учеников для автоматического прохождения учебных курсов в системе DL и сравнительный анализ достижений различных ГенИИ между собой и с реальными студентами; накопление и распространение опыта работы студентов ГенИИ; повышение качества обучения с использованием ГенИИ развитием системы препромптов по задачам и предметам; дальнейшая персонализация обучения за счет реализации продвинутых методик использования ГенИИ (активный ГенИИ, Learning by Teaching). Тактика внедрения ГенИИ последовательно и подробно описывает практические шаги по реализации стратегии.

Об авторе

М. С. Долинский
Гомельский государственный университет имени Франциска Скорины
Беларусь

Долинский Михаил Семенович, канд. техн. наук, доц. кафедры математических проблем управления и информатики

246023, г. Гомель, ул. Советская



Список литературы

1. Kaleem M., Hassan M. A., Khurshid S. K. (2024) A Machine Learning-Based Adaptive Feedback System to Enhance Programming Skill Using Computational Thinking. IEEE Access. 12. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10506466.

2. Sun Zhang, Jianhao Yang, Xiaoshuang Sang (2023) Exploring the Applications of EduCoder Platform in Blended Teaching for Computer Major. Journal of Education and Educational Research. 4 (2). https://drpress.org/ojs/index.php/jeer/article/view/10819/10528.

3. Zihao Li, Sun Zhang, Xiaoshuang Sang (2023) Exploration of Machine Learning Teaching Based on the EduCoder Platform. Journal of Education and Educational Research. 4 (3). https://drpress.org/ojs/index.php/jeer/article/download/11387/11088.

4. Figueiredo J., García-Peñalvo F. J. (2021) Teaching and Learning Tools for Introductory Programming in University Courses. Proceedings of the 2021 International Symposium on Computers in Education (SIIE), 23–24 Sept. 2021, Málaga, Spain. https://doi.org/10.1109/SIIE53363.2021.9583623.

5. Phan V., Hicks E. (2018) Code4Brownies: An Active Learning Solution for Teaching Programming and Problem Solving in the Classroom. Proceedings of the 23 rd Annual ACM Conference on Innovation and Technology in Computer Science Education. 153–158. https://dl.acm.org/doi/10.1145/3197091.3197128.

6. Herden O. (2024) Integration of Chatbots for Generating Code into Introductory Programming Courses. International Conference “Future of Education”. https://conference.pixel-online.net/files/foe/ed0014/FP/9091-ICT6673-FP-FOE14.pdf.

7. Martinez-Araneda C., Gutiérrez M., Maldonado D., Gómez P., Segura A., Vidal-Castro C. (2024) Designing a Chabot to Support Problem-Solving in a Programming Course. INTED2024 Proceedings. 966–975. https://library.iated.org/view/MARTINEZARANEDA2024DES.

8. Martínez-Araneda C., Gutiérrez Valenzuela M., Gómez Meneses P., Maldonado Montiel D., Segura Navarrete A., Vidal-Castro C. (2023) How Useful TutorBot+ is for Teaching and Learning in Programming Courses: A Preliminary Study. 42 nd IEEE International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile. 1–7. https://ieeexplore.ieee.org/abstract/document/10315697.

9. Kimio Kuramitsu, Yui Obara, Miyu Sato, Momoka Obara (2023) KOGI: A Seamless Integration of ChatGPT into Jupyter Environments for Programming Education. In Proceedings of the 2023 ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-E 2023). 50–59. https://doi.org/10.1145/3622780.3623648.

10. Jian Liao, Linrong Zhong, Longting Zhe, Handan Xu, Ming Liu, Tao Xie (2024) Scaffolding Computational Thinking With ChatGPT. IEEE Transactions on Learning Technologies. 17. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10508087.

11. Sarshartehrani F., Mohammadrezaei E., Behravan M., Gracanin D. (2024) Enhancing E-Learning Experience Through Embodied AI Tutors in Immersive Virtual Environments: A Multifaceted Approach for Personalized Educational Adaptation. Adaptive Instructional Systems. HCII 2024. Lecture Notes in Computer Science. 14727. https://doi.org/10.1007/978-3-031-60609-0_20.

12. Mohammad Abolnejadian, Sharareh Alipour, Kamyar Taeb (2024) Leveraging ChatGPT for Adaptive Learning Through Personalized Prompt-Based Instruction: A CS1 Education Case Study. Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA '24). 521, 1–8. https://doi.org/10.1145/3613905.3637148.

13. Mark Liffiton, Brad Sheese, Jaromir Savelka, Paul Denny (2023) CodeHelp: Using Large Language Models with Guardrails for Scalable Support in Programming Classes. https://arxiv.org/pdf/2308.06921.

14. Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, Andrew Luxton-Reilly (2024). Desirable Characteristics for AI Teaching Assistants in Programming Education. arXiv. https://arxiv.org/pdf/2405.14178v1.

15. Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Z. Henley, Paul Denny, Michelle Craig, et al. (2024) CodeAid: Evaluating a Classroom Deployment of an LLM-based Programming Assistant that Balances Student and Educator Needs. arXiv. https://arxiv.org/pdf/2401.11314.

16. Samuel D. George, Prasun Dewan (2024) NotebookGPT – Facilitating and Monitoring Explicit Lightweight Student GPT Help Requests During Programming Exercises. Companion Proceedings of the 29th International Conference on Intelligent User Interfaces. 62–65. https://doi.org/10.1145/3640544.3645234.

17. Changyoon Lee, Junho Myung, Jieun Han, Jiho Jin, Alice Oh (2023) Learning from Teaching Assistants to Program with Subgoals: Exploring the Potential for AI Teaching Assistants. arXiv. https://arxiv.org/pdf/2309.10419.

18. Lianne Roest, Hieke Keuning, Johan Jeuring (2024) Next-Step Hint Generation for Introductory Programming Using Large Language Models. Proceedings of the 26th Australasian Computing Education Conference. https://doi.org/10.1145/3636243.3636259.

19. Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, Juho Kim (2023) Teach AI How to Code: Using Large Language Models as Teachable Agents for Programming Education. arXiv. https://arxiv.org/pdf/2309.14534.

20. Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, Juho Kim (2023) Teach AI How to Code: Using Large Language Models as Teachable Agents for Programming Education. arXiv. https://arxiv.org/pdf/2309.14534v2.

21. Dolinsky M. S. (2022a) Instrumental System of Distance Learning DL.GSU.BY and Examples of Its Application. Global Journal of Computer Science and Technology: G Interdisciplinary. 22 (1), 44–53 http://elib.gsu.by/jspui/handle/123456789/54044.

22. Dolinsky (2016) Gomel Training School for Olympiads in Informatics. Olympiads in Informatics. 10, 237–247. DOI: 10.15388/ioi.2016.16.

23. Dolinsky M. S. (2022b) Teaching Algorithms and Programming First Year University Students on Base of Distance Learning System DL.GSU.BY. WSEAS Transactions on Advances in Engineering Education. 19, 52–57. https://wseas.com/journals/articles.php?id=5611.

24. Dolinsky M. S. (2022c) Experience of Blended Learning the Fundamentals of Digital Electronics for First/ Second Year University Students On Base of Distance Learning System DL.GSU.BY. International Journal of Education and Learning Systems. 7, 59–64. https://www.iaras.org/iaras/home/caijels/experience-of-blended-learning-the-fundamentals-of-digital-electronics-for-first-second-year-university-students-on-base-of-distance-learning-system-dl-gsu-by.


Рецензия

Для цитирования:


Долинский М.С. Стратегия и тактика внедрения генеративного искусственного интеллекта в инструментальную систему дистанционного обучения DL.GSU.BY. Цифровая трансформация. 2024;30(4):42-49. https://doi.org/10.35596/1729-7648-2024-30-4-42-49

For citation:


Dolinsky M.S. Strategy and Tactics for Introducing Generative Artificial Intelligence into the Instrumental Distance Learning System DL.GSU.BY. Digital Transformation. 2024;30(4):42-49. (In Russ.) https://doi.org/10.35596/1729-7648-2024-30-4-42-49

Просмотров: 121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2522-9613 (Print)
ISSN 2524-2822 (Online)